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1. BASIC DEFINITIONS / RESULTS

The goal of these notes is to define the Fourier series in an arbitrary Hilbert space
H, and to show that the Fourier series of an element in H converges to that element.

Recall from linear algebra the following:

1.1. Definition. An inner product on a complex vector space V is a function (-, -): V2 —
C satistying

(1) (z,y) = (y,7)
(2) (-,-) is linear in the first entry,
(3) (-,-) is positive definite.

1.2. Lemma. Any inner product induces a norm, ||z|| = v/{(z,x), and satisfies:

(1) [{z, )| < [lz[Hyl, |
(2) [lyll < [[Az+yll for every A € C iff (x,y) =0,

2 2 2 2
(3) llz+yll” + llz = ylI” = 2[|=[I” + 2 [y |I"-
The proof is skipped for time.

1.3. Lemma. The norm function ||-|| : V' — R and the inner product (-,-) : VxV —
C are continuous functions.

Proof. The norm is continuous by the triangle inequality,

[zl =Nyl < llz =l

The inner product is continuous since

(20, yo) — (&, y)| = [{z0 — 2,90) + (2,50 — ¥)| < [0 — [ llyoll + [[zoll ly — vol
by the triangle and Cuachy-Schwarz inequality. Then if ||z — x| < /(2 ||yol|) and

lly — voll < e/(2]||xol), then |{zo,yo) — (z,y)| < & which shows that (-, ) is continuous.

O
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Also probably skip this for time.

1.4. Definition. A Hilbert space is an inner product space, (H, (-, -)), which is com-
plete with respect to the norm induced by the inner product. i.e. It is a Banach
space whose norm comes from an inner product.

In proposition 8 from the LP spaces section, we saw that L” is a complete metric
space, and is hence a Banach space. A natural question is when is L” a Hilbert space?

1.5. Example. If p =2, then (f, g) = fX fgdu is an inner product. All of the proper-
ties are easily seen to be satisfied, and || f||3 = [ [fPdu= [ ffdu={f,[)

However, consider the space LP(X, ) where p # 2. If X contains two disjoint
subsets with finite measure, then LP(X, u) is not a Hilbert space. To see this, we
normalize the indicator functions of the two sets and show that the parallelogram
law fails.

Let A, B be the two sets, and let f = 1/(1u(A))"Pxa, g = 1/(u(B))""?x 5. Then,

py 2/p
HﬂwW={A ! }.

1
P (B
f + g is 0 outside of AU B, and since AN B = () we calculate the integral to be
1 1 P 1 1

P

—— XA —l—/ — X8| = o HA) + ——u(B) = 2,
f e = [ o] = @+ e
which gives || f + g|* = 2%/?. Similarly we get that || f — g* = 2%/

However, || f|I> = |lgl*> = 1, so 2||f]I*> + 2 |lg]|> = 4 # 2 - 22/?. Hence the parallelo-
gram law fails, so ||-||, cannot come form an inner product.

If p = oo, then f = x4 and g = xp contradicts the parallelogram law since

1.6. Proposition. Let H be a Hilbert space, and A C H be a non-empty closed con-
ver subset. Then A contains a unique element of minimal norm.

Proof. Let d = inf ¢ ||ly||. Since E is non empty and the norm is non-negative, we
know that d is some finite number. We can find a sequence of points x,, € E with
||x,|| converging to d (if we could not, then d would not be the infimum).

Since E is convex, (z,, + x,)/2 € E, and so we have ||(x,, + z,,)/2| > d. Then
using the parallelogram law, we have

[ (zm — xn>/2||2 = (||xm||2 + Hanz)/Q — (@ + xn>/2||2 < (meHZ + ||J7n||2)/2 —d.
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Then as n, m — oo, we have

(@ — 20) /2] = (d® +d?)/2 — d* = 0,
showing that z,, is a Cauchy sequence. Since E is closed and H is complete, we have

T, > x € FR.

Since ||-|| is continuous, ||x|| = d. If there were some other point 2/ € F with
|2’|| = d, then again using the parallelogram law and the fact that (z + 2’)/2 € E,
we have

(@ = 2") /21" = (|l + 12/]*) /2 = [[(z + 2) /2I|" < (d* + d%) /2 — d* = 0,
showing that = = /. O
We define the orthogonal compliment of a subspace M C H to be
M+ ={x € H: (x,y) =0 for every y € M}.

If M is closed, then it is itself a Hilbert space, and so is M*. The fact that M= is
a subspace follows easily from the linearity of the inner product. The fact that M+
is closed follows from the continuity of the inner product.

If H; and H, are Hilbert spaces with H; N Hy = {0}, then we define the direct sum
to be

Hl@HQI{hl—i-hgihlGHl,hQEHQ}.

1.7. Proposition. Let H be a Hilbert space and M C H a closed subspace. Then M
1s a direct summand of H.

Proof. Since M and M+~ are Hilbert spaces, we show that H = M @& M*.
M N M+ = {0} since if z € M N M*, then (x,z) =0so x = 0.

For any y € H, let E =y — M. Then FE is a convex closed subset of H. Indeed, if
y —my and y — my are in F, then the line between these two points is

t(ma —ma) + (y —m2) =y — (ma — t(ma — my)) € E,

since my — t(mg — my) € M, so E is convex. Moreover its closed since it is the
translate of a closed set. Then by proposition (1.6) there is a unique element with
minimum norm. Let that element be y — m. Then for any x € M, and A € C we
have

ly —m|| <|ly —m+ Az

Then by Lemma (1.2), we have (y — m,z) = 0, so y — m € M~*. Moreover
y =m+ (y —m) showing that H = M & M+, O
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2. ORTHONORMAL BASES

If M is a closed subspace of a Hilbert space H, then for x € H, we can define the
orthogonal projection onto M as Py/(z) = m, where x = m +m/ € M & M*. This
is well defined since there is a unique such representation for z.

Just like in finite dimensional linear algebra, we use the inner products and orthog-
onal projections to define the best approximation to a vector x in a finite dimensional
subspace. This is done by projecting x onto an orthonormal basis for the subspace.

A subset U C H is called orthonormal if (u,,ug) = 67 for all u,,us € A.

We define the Fourier coefficients of x with respect to U as z, = (2, uq).

2.1. Theorem. Let U = {u, : « € A} be an orthonormal set in a Hilbert space H
and let {aq,...,a,} be a finite subset of A. Then,

(1) If o =3, citta,, then ¢; = xa, and |Jal|” = 3, |2a,?

(2) For any v € H and any scalars X;, we have

with equality if and only if \; = .

(3) The vector Y ;| Ta,Uq, 1S the orthogonal projection of x onto the subspace
spanned by {uy,}, 1 =1,...,n.

Proof. (1) This follows from orthonormality. x,, = (z,uq,) = ¢;.

||33||2 =2 Lojtia, Zxaiuai> =2 Zj xaimwawuaj) =2 |Ta;

(2) Squaring and expanding the norm, we get

2
lz)* =) |za,

for the left hand side and

Iz = 2Re > " za X+ > [Nl
=1 i=1

for the right hand side. This is equivalent to

2Reixai)\_i < i | T |* + i N2
i=1 i=1 i=1

This follows from the Cauchy-Schwarz inequality,

2

2
)
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n n n
‘Z‘rai)‘i| < Z|xai|2 Z|>‘l‘2>
=1 =1 =1

and the AGM inequality,

n n n n

D i [Tai” D0 [N
Dl Py [ Do A2 < e s
i=1 i=1 2

Since we have

2+ IMQ‘

" " Sl
ReZa:ai)\i§|Zxai)\i\§ =10 5
i=1 i=1

(3) This follows from the definition of the orthogonal projection. We constructed
the decomposition as x = m+x —m where x —m was the element of minimal
norm in & — M, and then defined the projection to be m. (2) shows that the
element of minimal norm in z — M is © — )" | g, Ua,.

0

Let I2(A) be the Hilbert space of square summable sequences with |A| terms in the
sequences. That is, I?(4) = {¢: A = C: > 4 |#(a)]* < oo} with inner product,

(0:0) = 2aea 0(a)i(a).

The next theorem shows that every such ¢ arises as the Fourier coefficients from an
element of a Hilbert space, if that Hilbert space has an orthonormal set of cardinality

A

2.2. Theorem. IfU = {u, : « € A} is an orthonormal set in a Hilbert space H, and
¢ € 1*(A), then there is an x € H such that ¢ is equal to the function i: A — C,
(o) = (z,uq)-

Proof. Since ¢ is square summable, at most countable many terms in ¢ can be non-
zero. Indeed, if we let A, = {a : |¢p(a)]* > 1/n}, then we see

D@ =Y g = 1/n.

a€cA a€A, aEA,
Since the left hand side of this inequality is finite, we must have that A, is finite.
Then

A ={aeA:|g(a) >0}
neN
is a countable union of finite sets and hence is countable.

Let E = {a,} a countable set for which ¢ =0 on A\ E. Then define

Tp = Z gb(ai)uai .
=1
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Notice that z, is Cauchy in H. Indeed, if n > m, then

|20 — Tml| = Z (i) |?

i=m-+1
since ¢ is square summable.

Hence x,, — z for some x € H, x =~ | ¢(a)uq,, and

= <Z (o) Ua,, Ua) = Z¢(an)<uan7ua> = ¢(a),
n=1
since if @ € {a,}, the sum collapses to ¢(a). Otherwise it collapses to 0 and
(o) =0 since a ¢ {a,}. O

We would like to be able to approximate the elements of a Hilbert space by their
Fourier expansions, with the limit equaling the element. The next Theorem and its
Corollary give equivalent conditions for this to happen.

2.3. Theorem. Let U = {u, : a« € A} be an orthonormal set in a Hilbert space H.
The following are equivalent

1/2
D) Nl = {acazd} ™ = 12l
(2) The linear map A: H — 12(A), A(z) = 2 is a Hilbert space isomorphism,
3) U is a mazimal orthonormal set in H,
(3)

(4) The linear span of U is dense in H,

Proof. Suppose that 1 holds. The polarization identity shows that the inner product
is preserved.

2 2 . . 2 . . 2
(@ yyr =1/4{llz+yly — lz -yl +ille+iylly —illz -yl }
A A2 N ~ (12 TN TN C A2
=1/4 {||5L‘ +9llacay = 1% = Gllaca + 1 [ Fig][p 0, — i ll2 = Zyle(A)}
= <j7g>l2(A)
A is onto by Theorem (2.2). It is injective since if £ = 0, then ||z|| = ||Z|| = 0, so

x = 0.

Suppose 2. If U is not maximal, then there must be some x # 0, x ¢ U with
(x,uq) = 0 for every a. Then & = 0, contradicting the fact that A is an isomorphism.

Suppose (3). If span(U) is not dense, then span(U) # H, so there is some

xr € Spaun(U)L with  # 0. Then (z,u,) = 0 for every o which contradicts the
maximality of U.
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Suppose (4). Then A: span(U) — [2(A), x + & is continuous. Indeed, if x =
Y wck Calla, then

R cq, a€F
(o) = :
0 else

So we see that [|z||; = [[2]|2(4), and this gives continuity by the triangle inequality.

Next we extend A to H by taking limits. If z € H, let z,, — x with z,, € span(U),
then we define A(z) = lim, oo A(z,). A(z) exists because A(z,) is a Cauchy se-
quence in [?(A). Tt is well defined since A is an isometry. Explicitly, if z,,y, — =,

then |2, — Gnll = |20 — ynll — 0, so &, and g, converge to the same point in [*(A).
Moreover, A is an isometry since ||z| = limy, o0 ||Tn]| = limy, 00 [|Zn]| = ||Z]]. This
shows (1). O

This shows that there are at most countably many Fourier coefficients which are
non-zero for any given x € H and orthonormal basis U.

2.4. Corollary. If U is an orthonormal basis of H and x € H, then there are at most
countably many o with x, # 0. Moreover

Tr = Z Tale,
acF
where F is the set of o for which zo # 0, F = {a,, }\_, where N is possibly infinite.

Proof. The at most countable part follows from ||z|| = ||z]| < oo, and the fact that if
an uncountable sum converges then at most countably many terms can be non-zero
(we showed this already).

If F is finite then the sum is a finite sum so it is an element in H. Suppose it is
infinite. Then x, = Y\ | q,Uq, is a Cauchy sequence since

n n
> e = 3 a0,

i=m+1 i=m+1
since Y |z4,|?* converges. Therefore, Y >0, o, Uq, is in H.

|Tn — Tl =

Let y =2 — Y o0} Ta,Uq,- Then for any «,

o0 o0
Q(a) = <SL’ - Zxaiuai; ua> = (x,ua> - Zxai <ua¢7 ua> =Ty — Ta,
i=1 i=1
since

00
Z Lo, <uaia uoc> = Za
=1

if o = a; for some j. Otherwise it is 0, but so is z,.
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Since U is a maximal orthonormal set, this shows that y = 0, and hence z =

o0
Zi:l Lo Uay; -
O

2.5. Ezample. Add the standard example of L*(T).

3. BOUNDED LINEAR OPERATORS

Let L: X — Y be a linear operator between normed vector spaces. L is said to be
bounded if there exists a constant C' such that

[Lally < C,
for every z € X with ||z||, = 1.

3.1. Lemma. Let L: X — Y be a linear map between normed vector spaces. Then
the following are equivalent.

(1) L is bounded,
(2) L is continuous,

(3) L is continuous at the origin.

Proof. Suppose L is bounded with constant C. If 0 < ||z — y|| < ¢/C, then
v —y/(lz—yllx)

has unit norm, so
Lz =)lly /e —yllx <C,
SO

ILa = Lylly < Clla —yllx =
Clearly (2) implies (3).

If L is continuous at 0, then there is some ¢ > 0 such that whenever ||z|, < § we
have ||Lz||,- < 1. Then for any = with ||z||, = 1, we have ||(6/2)z||, = /2 <6, so
I1L(0/2)x|ly <1,
and hence
[Lxlly <2/0
so L is bounded. U

Define X* to be the vector space of continuous linear functionals on X. Since we
have just shown continuity is equivalent to boundedness, we define
JAl = sup [Ax].
[l=l<1
This turns X* into a Banach space. For a Hilbert space H, we have already shown
that A,(z) = (z,y) is a continuous linear functional. It turns out that this is the
only type of linear functional on H.
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3.2. Theorem. Let H be a Hilbert space and A € H*. There is a unique y € H such
that A = A,. Moreover, ||A|| . = ||lylly, and the map y — A, is a conjugate linear
1sometry.

Proof. We have already shown that A, € H*. The fact that ||A,|
from the Cauchy-Schwarz inequality. For ||z|| <1 we have

e = Iyl follows

1Ay (@)] < =l lyll < v
Moreover this bound is attained with x = y/[[y|.
since Ay, = AA,, the map is a conjugate linear isometry.

If A = 0 then the statement holds with y = 0. Otherwise let N = ker(A) = A~1(0).
This is a proper closed subspace of H, so there is some z € N+ with z # 0. Then
(Az)z — (Az)x € N for any z. Hence we get

0= {((Ax)z — (Az)x,2) = Ax ||Z||2 — Az(x, 2),
which gives

Az =Xz, 2)/ [|2]* = Aya
with y = Az/ ||z]>.
To prove uniqueness, suppose that

(z,y) = (x,)
for every x € H. Then

(z,y—y) =0
for all x € H. In particular for x = y — 3’ which gives

ly =yl =0
and hence y = v/. O
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