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1. Basic definitions / results

The goal of these notes is to define the Fourier series in an arbitrary Hilbert space
H, and to show that the Fourier series of an element in H converges to that element.

Recall from linear algebra the following:

1.1. Definition. An inner product on a complex vector space V is a function 〈·, ·〉 : V 2 →
C satisfying

(1) 〈x, y〉 = 〈y, x〉
(2) 〈·, ·〉 is linear in the first entry,
(3) 〈·, ·〉 is positive definite.

1.2. Lemma. Any inner product induces a norm, ‖x‖ =
√
〈x, x〉, and satisfies:

(1) |〈x, y〉| ≤ ‖x‖ ‖y‖,
(2) ‖y‖ ≤ ‖λx+ y‖ for every λ ∈ C iff 〈x, y〉 = 0,
(3) ‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2.

The proof is skipped for time.

1.3. Lemma. The norm function ‖·‖ : V → R and the inner product 〈·, ·〉 : V ×V →
C are continuous functions.

Proof. The norm is continuous by the triangle inequality,

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ .
The inner product is continuous since

|〈x0, y0〉 − 〈x, y〉| = |〈x0 − x, y0〉+ 〈x, y0 − y〉| ≤ ‖x0 − x‖ ‖y0‖+ ‖x0‖ ‖y − y0‖
by the triangle and Cuachy-Schwarz inequality. Then if ‖x− x0‖ < ε/(2 ‖y0‖) and
‖y − y0‖ ≤ ε/(2 ‖x0‖), then |〈x0, y0〉−〈x, y〉| < ε which shows that 〈·, ·〉 is continuous.

�
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Also probably skip this for time.

1.4. Definition. A Hilbert space is an inner product space, (H, 〈·, ·〉), which is com-
plete with respect to the norm induced by the inner product. i.e. It is a Banach
space whose norm comes from an inner product.

In proposition 8 from the Lp spaces section, we saw that Lp is a complete metric
space, and is hence a Banach space. A natural question is when is Lp a Hilbert space?

1.5. Example. If p = 2, then 〈f, g〉 =
∫
X
fgdµ is an inner product. All of the proper-

ties are easily seen to be satisfied, and ‖f‖22 =
∫
X
|f |2dµ =

∫
X
ffdµ = 〈f, f〉

However, consider the space Lp(X,µ) where p 6= 2. If X contains two disjoint
subsets with finite measure, then Lp(X,µ) is not a Hilbert space. To see this, we
normalize the indicator functions of the two sets and show that the parallelogram
law fails.

Let A, B be the two sets, and let f = 1/(µ(A))1/pχA, g = 1/(µ(B))1/pχB. Then,

‖f + g‖2 =

{∫
X

∣∣∣∣ 1

µ(A)1/p
χA +

1

µ(B)1/p
χB

∣∣∣∣p}2/p

.

f + g is 0 outside of A ∪B, and since A ∩B = ∅ we calculate the integral to be∫
X

∣∣∣∣ 1

µ(A)1/p
χA

∣∣∣∣p +

∫
X

∣∣∣∣ 1

µ(B)1/p
χB

∣∣∣∣p =
1

µ(A)
µ(A) +

1

µ(B)
µ(B) = 2,

which gives ‖f + g‖2 = 22/p. Similarly we get that ‖f − g‖2 = 22/p.

However, ‖f‖2 = ‖g‖2 = 1, so 2 ‖f‖2 + 2 ‖g‖2 = 4 6= 2 · 22/p. Hence the parallelo-
gram law fails, so ‖·‖p cannot come form an inner product.

If p = ∞, then f = χA and g = χB contradicts the parallelogram law since
‖f‖∞ = ‖g‖∞ = ‖f + g‖∞ = ‖f − g‖∞ = 1.

1.6. Proposition. Let H be a Hilbert space, and A ⊂ H be a non-empty closed con-
vex subset. Then A contains a unique element of minimal norm.

Proof. Let d = infy∈E ‖y‖. Since E is non empty and the norm is non-negative, we
know that d is some finite number. We can find a sequence of points xn ∈ E with
‖xn‖ converging to d (if we could not, then d would not be the infimum).

Since E is convex, (xm + xn)/2 ∈ E, and so we have ‖(xm + xn)/2‖ ≥ d. Then
using the parallelogram law, we have

‖(xm − xn)/2‖2 = (‖xm‖2 + ‖xn‖2)/2− ‖(xm + xn)/2‖2 ≤ (‖xm‖2 + ‖xn‖2)/2− d2.
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Then as n,m→∞, we have

‖(xm − xn)/2‖ → (d2 + d2)/2− d2 = 0,

showing that xn is a Cauchy sequence. Since E is closed and H is complete, we have
xn → x ∈ E.

Since ‖·‖ is continuous, ‖x‖ = d. If there were some other point x′ ∈ E with
‖x′‖ = d, then again using the parallelogram law and the fact that (x + x′)/2 ∈ E,
we have

‖(x− x′)/2‖2 = (‖x‖2 + ‖x′‖2)/2− ‖(x+ x′)/2‖2 ≤ (d2 + d2)/2− d2 = 0,

showing that x = x′. �

We define the orthogonal compliment of a subspace M ⊂ H to be

M⊥ = {x ∈ H : 〈x, y〉 = 0 for every y ∈M}.

If M is closed, then it is itself a Hilbert space, and so is M⊥. The fact that M⊥ is
a subspace follows easily from the linearity of the inner product. The fact that M⊥

is closed follows from the continuity of the inner product.

If H1 and H2 are Hilbert spaces with H1∩H2 = {0}, then we define the direct sum
to be

H1 ⊕H2 = {h1 + h2 : h1 ∈ H1, h2 ∈ H2}.

1.7. Proposition. Let H be a Hilbert space and M ⊂ H a closed subspace. Then M
is a direct summand of H.

Proof. Since M and M⊥ are Hilbert spaces, we show that H = M ⊕M⊥.

M ∩M⊥ = {0} since if x ∈M ∩M⊥, then 〈x, x〉 = 0 so x = 0.

For any y ∈ H, let E = y −M . Then E is a convex closed subset of H. Indeed, if
y −m1 and y −m2 are in E, then the line between these two points is

t(m2 −m1) + (y −m2) = y − (m2 − t(m2 −m1)) ∈ E,
since m2 − t(m2 − m1) ∈ M , so E is convex. Moreover its closed since it is the
translate of a closed set. Then by proposition (1.6) there is a unique element with
minimum norm. Let that element be y − m. Then for any x ∈ M , and λ ∈ C we
have

‖y −m‖ ≤ ‖y −m+ λx‖ .
Then by Lemma (1.2), we have 〈y − m,x〉 = 0, so y − m ∈ M⊥. Moreover

y = m+ (y −m) showing that H = M ⊕M⊥. �
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2. Orthonormal Bases

If M is a closed subspace of a Hilbert space H, then for x ∈ H, we can define the
orthogonal projection onto M as PM(x) = m, where x = m + m′ ∈ M ⊕M⊥. This
is well defined since there is a unique such representation for x.

Just like in finite dimensional linear algebra, we use the inner products and orthog-
onal projections to define the best approximation to a vector x in a finite dimensional
subspace. This is done by projecting x onto an orthonormal basis for the subspace.

A subset U ⊂ H is called orthonormal if 〈uα, uβ〉 = δβα for all uα, uβ ∈ A.

We define the Fourier coefficients of x with respect to U as xα = 〈x, uα〉.

2.1. Theorem. Let U = {uα : α ∈ A} be an orthonormal set in a Hilbert space H
and let {α1, . . . , αn} be a finite subset of A. Then,

(1) If x =
∑n

i=1 ciuαi, then ci = xαi and ‖x‖2 =
∑

i=1 |xαi |2.

(2) For any x ∈ H and any scalars λi, we have∥∥∥∥∥x−
n∑
i=1

xαiuαi

∥∥∥∥∥ ≤
∥∥∥∥∥x−

n∑
i=1

λiuαi

∥∥∥∥∥
with equality if and only if λi = xαi.

(3) The vector
∑n

i=1 xαiuαi is the orthogonal projection of x onto the subspace
spanned by {uαi}, i = 1, . . . , n.

Proof. (1) This follows from orthonormality. xαi = 〈x, uαi〉 = ci.

‖x‖2 = 〈
∑
xαiuαi ,

∑
xαiuαi 〉 =

∑
i

∑
j xαixαj〈uαi , uαj〉 =

∑
|xαi |2.

(2) Squaring and expanding the norm, we get

‖x‖2 −
∑
|xαi |2,

for the left hand side and

‖x‖2 − 2 Re
n∑
i=1

xαiλi +
n∑
i=1

|λi|2.

for the right hand side. This is equivalent to

2 Re
n∑
i=1

xαiλi ≤
n∑
i=1

|xαi |2 +
n∑
i=1

|λi|2.

This follows from the Cauchy-Schwarz inequality,
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|
n∑
i=1

xαiλi| ≤

√√√√ n∑
i=1

|xαi |2

√√√√ n∑
i=1

|λi|2,

and the AGM inequality,√√√√ n∑
i=1

|xαi |2

√√√√ n∑
i=1

|λi|2 ≤
∑n

i=1 |xαi |2 +
∑n

i=1 |λi|2

2

Since we have

Re
n∑
i=1

xαiλi ≤ |
n∑
i=1

xαiλi| ≤
∑n

i=1 |xαi |2 +
∑n

i=1 |λi|2

2
.

(3) This follows from the definition of the orthogonal projection. We constructed
the decomposition as x = m+x−m where x−m was the element of minimal
norm in x−M , and then defined the projection to be m. (2) shows that the
element of minimal norm in x−M is x−

∑n
i=1 xαiuαi .

�

Let l2(A) be the Hilbert space of square summable sequences with |A| terms in the
sequences. That is, l2(A) = {φ : A → C :

∑
α∈A |φ(α)|2 < ∞} with inner product,

〈φ, ψ〉 =
∑

α∈A φ(α)ψ(α).

The next theorem shows that every such φ arises as the Fourier coefficients from an
element of a Hilbert space, if that Hilbert space has an orthonormal set of cardinality
|A|.

2.2. Theorem. If U = {uα : α ∈ A} is an orthonormal set in a Hilbert space H, and
φ ∈ l2(A), then there is an x ∈ H such that φ is equal to the function x̂ : A → C,
x̂(α) = 〈x, uα〉.

Proof. Since φ is square summable, at most countable many terms in φ can be non-
zero. Indeed, if we let An = {α : |φ(α)|2 > 1/n}, then we see∑

α∈A

|φ(α)|2 ≥
∑
α∈An

|φ(α)|2 ≥
∑
α∈An

1/n.

Since the left hand side of this inequality is finite, we must have that An is finite.
Then ⋃

n∈N

An = {α ∈ A : |φ(α)|2 > 0}

is a countable union of finite sets and hence is countable.

Let E = {αn} a countable set for which φ = 0 on Ar E. Then define

xn =
n∑
i=1

φ(αi)uαi .
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Notice that xn is Cauchy in H. Indeed, if n > m, then

‖xn − xm‖ =
n∑

i=m+1

|φ(αi)|2 → 0,

since φ is square summable.

Hence xn → x for some x ∈ H, x =
∑∞

n=1 φ(αn)uαn , and

x̂(α) = 〈
∞∑
n=1

φ(αn)uαn , uα〉 =
∑

φ(αn)〈uαn , uα〉 = φ(α),

since if α ∈ {αn}, the sum collapses to φ(α). Otherwise it collapses to 0 and
φ(α) = 0 since α /∈ {αn}. �

We would like to be able to approximate the elements of a Hilbert space by their
Fourier expansions, with the limit equaling the element. The next Theorem and its
Corollary give equivalent conditions for this to happen.

2.3. Theorem. Let U = {uα : α ∈ A} be an orthonormal set in a Hilbert space H.
The following are equivalent

(1) ‖x‖H =
{∑

α∈A x
2
α

}1/2
= ‖x̂‖l2(A),

(2) The linear map Λ: H → l2(A), Λ(x) = x̂ is a Hilbert space isomorphism,

(3) U is a maximal orthonormal set in H,

(4) The linear span of U is dense in H,

Proof. Suppose that 1 holds. The polarization identity shows that the inner product
is preserved.

〈x, y〉H = 1/4
{
‖x+ y‖2H − ‖x− y‖

2
H + i ‖x+ iy‖2H − i ‖x− iy‖

2
H

}
= 1/4

{
‖x̂+ ŷ‖2l2(A) − ‖x̂− ŷ‖

2
l2(A) + i

∥∥+̂iŷ
∥∥2
l2(A)
− i ‖x̂− iŷ‖2l2(A)

}
= 〈x̂, ŷ〉l2(A)

Λ is onto by Theorem (2.2). It is injective since if x̂ = 0, then ‖x‖ = ‖x̂‖ = 0, so
x = 0.

Suppose 2. If U is not maximal, then there must be some x 6= 0, x /∈ U with
〈x, uα〉 = 0 for every α. Then x̂ = 0, contradicting the fact that Λ is an isomorphism.

Suppose (3). If span(U) is not dense, then span(U) 6= H, so there is some

x ∈ span(U)
⊥

with x 6= 0. Then 〈x, uα〉 = 0 for every α which contradicts the
maximality of U .
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Suppose (4). Then Λ: span(U) → l2(A), x 7→ x̂ is continuous. Indeed, if x =∑
α∈F cαuα, then

x̂(α) =

{
cα α ∈ F
0 else

.

So we see that ‖x‖H = ‖x̂‖l2(A), and this gives continuity by the triangle inequality.

Next we extend Λ to H by taking limits. If x ∈ H, let xn → x with xn ∈ span(U),
then we define Λ(x) = limn→∞ Λ(xn). Λ(x) exists because Λ(xn) is a Cauchy se-
quence in l2(A). It is well defined since Λ is an isometry. Explicitly, if xn, yn → x,
then ‖x̂n − ŷn‖ = ‖xn − yn‖ → 0, so x̂n and ŷn converge to the same point in l2(A).

Moreover, Λ is an isometry since ‖x‖ = limn→∞ ‖xn‖ = limn→∞ ‖x̂n‖ = ‖x̂‖. This
shows (1). �

This shows that there are at most countably many Fourier coefficients which are
non-zero for any given x ∈ H and orthonormal basis U .

2.4. Corollary. If U is an orthonormal basis of H and x ∈ H, then there are at most
countably many α with xα 6= 0. Moreover

x =
∑
α∈F

xαuα,

where F is the set of α for which xα 6= 0, F = {αn}Nn=1 where N is possibly infinite.

Proof. The at most countable part follows from ‖x̂‖ = ‖x‖ <∞, and the fact that if
an uncountable sum converges then at most countably many terms can be non-zero
(we showed this already).

If F is finite then the sum is a finite sum so it is an element in H. Suppose it is
infinite. Then xn =

∑n
i=1 xαiuαi is a Cauchy sequence since

‖xn − xm‖ =

∥∥∥∥∥
n∑

i=m+1

xαiuαi

∥∥∥∥∥ =
n∑

i=m+1

|x2αi| → 0,

since
∑
|xαi |2 converges. Therefore,

∑∞
i=1 xαiuαi is in H.

Let y = x−
∑∞

i=1 xαiuαi . Then for any α,

ŷ(α) = 〈x−
∞∑
i=1

xαiuαi , uα〉 = 〈x, uα〉 −
∞∑
i=1

xαi〈uαi , uα〉 = xα − xα,

since
∞∑
i=1

xαi〈uαi , uα〉 = xα

if α = αj for some j. Otherwise it is 0, but so is xα.
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Since U is a maximal orthonormal set, this shows that y = 0, and hence x =∑∞
i=1 xαiuαi .

�

2.5. Example. Add the standard example of L2(T).

3. Bounded Linear Operators

Let L : X → Y be a linear operator between normed vector spaces. L is said to be
bounded if there exists a constant C such that

‖Lx‖Y ≤ C,

for every x ∈ X with ‖x‖X = 1.

3.1. Lemma. Let L : X → Y be a linear map between normed vector spaces. Then
the following are equivalent.

(1) L is bounded,

(2) L is continuous,

(3) L is continuous at the origin.

Proof. Suppose L is bounded with constant C. If 0 < ‖x− y‖X < ε/C, then

x− y/(‖x− y‖X)

has unit norm, so
‖L(x− y)‖Y / ‖x− y‖X ≤ C,

so

‖Lx− Ly‖Y ≤ C ‖x− y‖X = ε.

Clearly (2) implies (3).

If L is continuous at 0, then there is some δ > 0 such that whenever ‖x‖X < δ we
have ‖Lx‖Y < 1. Then for any x with ‖x‖X = 1, we have ‖(δ/2)x‖X = δ/2 < δ, so

‖L(δ/2)x‖Y < 1,

and hence
‖Lx‖Y < 2/δ

so L is bounded. �

Define X∗ to be the vector space of continuous linear functionals on X. Since we
have just shown continuity is equivalent to boundedness, we define

‖Λ‖ = sup
‖x‖≤1

|Λx|.

This turns X∗ into a Banach space. For a Hilbert space H, we have already shown
that Λy(x) = 〈x, y〉 is a continuous linear functional. It turns out that this is the
only type of linear functional on H.
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3.2. Theorem. Let H be a Hilbert space and Λ ∈ H∗. There is a unique y ∈ H such
that Λ = Λy. Moreover, ‖Λ‖H∗ = ‖y‖H , and the map y 7→ Λy is a conjugate linear
isometry.

Proof. We have already shown that Λy ∈ H∗. The fact that ‖Λy‖H∗ = ‖y‖H follows
from the Cauchy-Schwarz inequality. For ‖x‖ ≤ 1 we have

|Λy(x)| ≤ ‖x‖ ‖y‖ ≤ y.

Moreover this bound is attained with x = y/ ‖y‖.
since Λλy = λΛy, the map is a conjugate linear isometry.

If Λ = 0 then the statement holds with y = 0. Otherwise let N = ker(Λ) = Λ−1(0).
This is a proper closed subspace of H, so there is some z ∈ N⊥ with z 6= 0. Then
(Λx)z − (Λz)x ∈ N for any x. Hence we get

0 = 〈(Λx)z − (Λz)x, z〉 = Λx ‖z‖2 − Λz〈x, z〉,
which gives

Λx = λz〈x, z〉/ ‖z‖2 = Λyx

with y = Λz/ ‖z‖2.
To prove uniqueness, suppose that

〈x, y〉 = 〈x, y′〉
for every x ∈ H. Then

〈x, y − y′〉 = 0

for all x ∈ H. In particular for x = y − y′ which gives

‖y − y′‖2 = 0

and hence y = y′. �
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